

Massachusetts Institute of Technology

BACKGROUND/OBJECTIVES

Via interspecies metabolic exchanges, microbial communities are able to convert chemical nutrients into complex chemical compounds, which can be used for production of biofuels and biomaterials.

Motivation:

Perform *in silicio* studies of microbial consortia to evaluate their potential use in producing biofuels and biomaterials, eliminating pollutants, treating wastewater, or other biotechnology applications.

Objective:

Formulate a mathematical model to simulate the behavior of a microbial system and predict flowrates of metabolites.

INTRODUCTION

This is a simulation of a well-characterized, natural, hot spring microbial mat community in Yellowstone National Park [1]. It contains a sulfatereducing bacteria (SRB) and two photoheterotrophic bacteria, filamentous anoxygenic bacteria (FAP) and Synechococcus spp. (SYN). This mat is a good case study for microbial communities because the guilds exhibit different behaviors between day & night, and the community contains all of the prototypical metabolite exchange interactions described in [2].

INTERACTION TYPES

Figure 1: Yellow & blue circles: 2 different guilds. Red circles: metabolite. Aquamarine: environment. *Interaction diagrams adapted from* [2]

FLUX BALANCE ANALYSIS (FBA)

FBA writes a flux balance for each metabolite in the metabolism and assumes quasi-steady state. This creates an undetermined linear program, which FBA solves by assuming that the microorganism will try to maximize its growth rate.

QUANTIFYING INTERSPECIES METABOLIC EXCHANGES IN MICROBIAL COMMUNITIES WITH **DYNAMIC FLUX BALANCE ANALYSIS**

Ernesto Jimenez

Model Assumptions

- Cost coefficients for biomass flux are normalized
- . Concentration of metabolites exchanged by more than one organism
- are at steady state
- Residence time of community is 59 weeks
- 4. Mass fraction of carbon in each guild is 1/2

RESULTS

Figure 3: FAP reaches maximum growth rate once critical light intensity is reached

REFERENCES

- 1. Taffs, R. *et al.* BMC Systems Biology, 2009, 3:114.
- 2. Zomorrodi AR, Maranas CD PLoS Comput Biol 8(2): e1002363. doi:10.1371/journal.pcbi.1002363

MIT, DEPARTMENT OF CHEMICAL ENGINEERING

FUTURE WORK Apply methodology to consortia in bioprocesses such as fermentation or **Three mass balances** *Metabolites (i) entering mat from atmosphere* production of biofuels. Consider the accumulation of metabolite within guild for use at different time in the diel cycle. $\frac{dc_i}{dt} = n_{in,j} + \sum (-f_{i,k})C_k - \frac{c_i}{\tau}$ **SUMMARY** *Metabolites (j) consumed/produced in mat* Community behavior highlights: $\frac{dc_j}{dt} = \sum_{i} (-f_{j,k})C_k - \frac{c_j}{\tau}$ • SYN outcompeted the other guilds because it can choose not to share essential metabolites. • Uptake of ammonia and acetate by FAP is limited by light available. *Biomass (k)* $\frac{dC_k}{dt} = \left(\frac{f_k C_{mole}\mu}{x_k}\right) C_k - \frac{C_k}{\tau}$ • SRB reaches a constant growth rate with FAP because FAP is inter-(3)acting syntrophically with SRB via hydrogen exchange. Definitions Advantages of modeling approach:

 c_i - concentration of metabolite i

 C_k - concentration of guild k

 $n_{in,j}$ - system inlet molar flowrate of metabolite j $f_{i,k}$ - flux of metabolite *i* exchanged in guild *k*

 τ - residence time

 C_{mole} - moles of carbon per mole of biomass μ - molecular weight of carbon

 x_k - mass fraction of carbon in guild k

Figure 5: CO2 uptake and O2 release by photosynthetic community

ACKNOWLEDGEMENTS

I would like to thank Kai Höffner for his academic guidance in the project & his help with designing the poster, Diana Chien for helping me design the poster, and AMGEN for sponsoring my summer research.

. Mass of each guild is considered when performing FBA. 2. Normalizing the maximum biomass fluxes forces independent guilds to share with dependent guilds.

Modeling challenges faced:

Absence of experimentally determined flux values for the individual guilds.

2. Determining reasonable assumptions about the community.